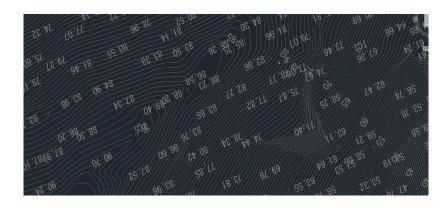
橋梁における CIM モデルの作成

株式会社エイル

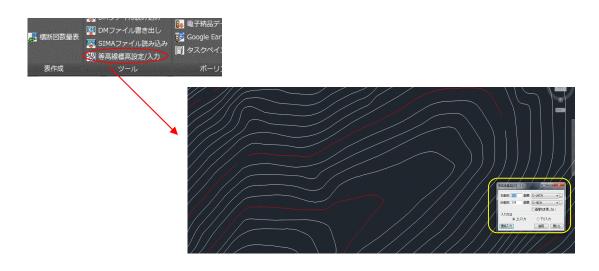
CIM モデルの流れ

STEP-1: 地形モデル

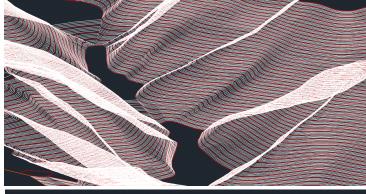

※目的→地形サーフェスを作成する為

使用する TEMPLATE

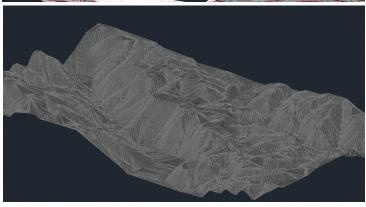
- ➤ Nexco 仕様
- ▶ 国土交通省仕様 20m 測点


使用するデータ

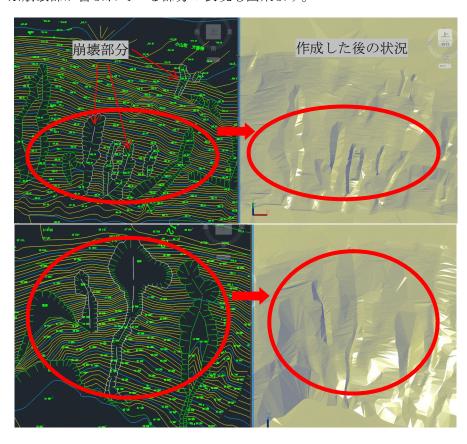
- ▶ 全体一般図
- ▶ 国土基盤地図情報
 - ✓ 10m メッシュ(標高)←概略設計
 - ✓ 5m メッシュ(標高)←予備設計
- 1. 全体一般図に有る標高無地形データです。


全体一般図地形データ

2. この標高無地形データを CIVIL3D に等高線標高設定/入力をする。



3. 作成した等高線でサーフェスを作成する。

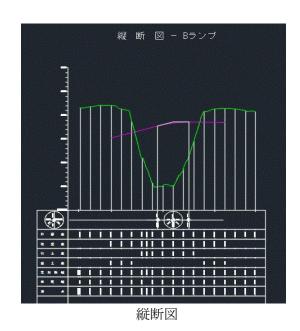


等高線サーフェス

TIN サーフェス

※崩壊部が含まれている部分の表現も出来ます。

STEP-2:線形モデル


※目的→橋梁構造物を線形ライン毎に配置する為。

使用するデータ

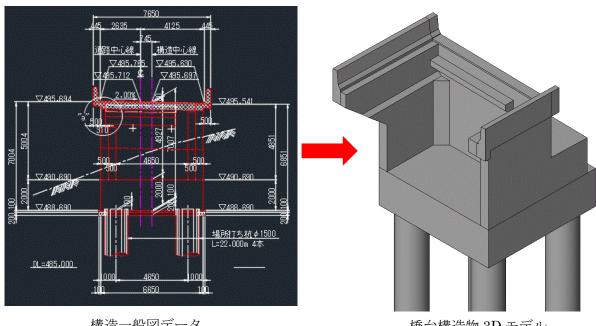
- ▶ 線形計算書の線形要素
 - ✔ 平面線形要素
 - ✔ 縦断線形要素
 - ✓ 横断線形要素
- 1. CIVIL3Dで線形計算書どおり側点線形を作成する。

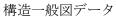
平面図

Sta. 4+60. 000

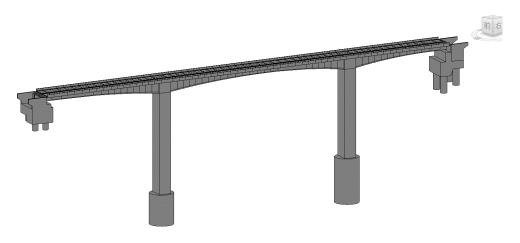
DL=515. 0
DL=510.0
DL=500. 0
DL=495. 0
DL=490. 0
DL=480. 0
DL=480. 0
DL=475. 0

横断図


STEP-3: 橋梁構造物モデル


※目的→3D的な上下橋梁構造物を作成する為。

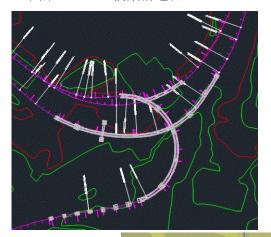
使用するデータ


▶ 構造一般図データ

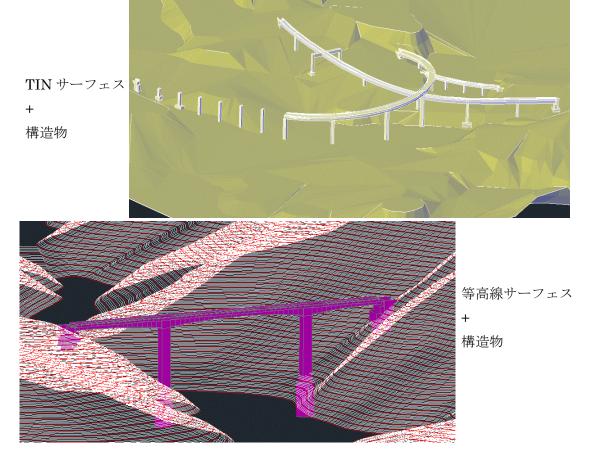
1. 構造一般図データから REVIT で 3D 的な上下構造物を作成する。

橋台構造物 3D モデル

橋梁構造物 3D モデル



STEP-4: 統合モデル


※目的→構造物と地形サーフェスを組合せる為。

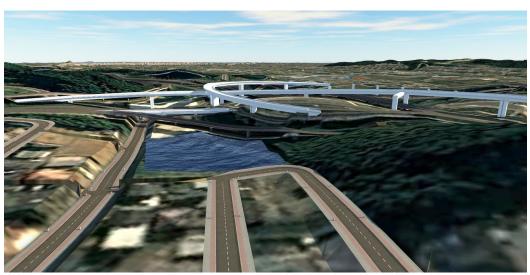
使用するデータ

- ▶ 地形モデル・橋梁構造物モデル
- 1. 出来上がった橋梁構造物は CIVIL3D に取り込んで側点毎に構造物モデルを配置する。

構造物を側点ごと配置

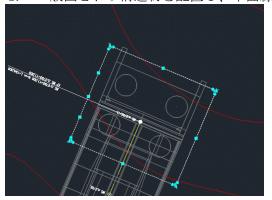
STEP-5: プロジェクト使用統合モデル

※目的→よりビジュアルな橋梁構造物モデルを作成する為。


使用するデータ

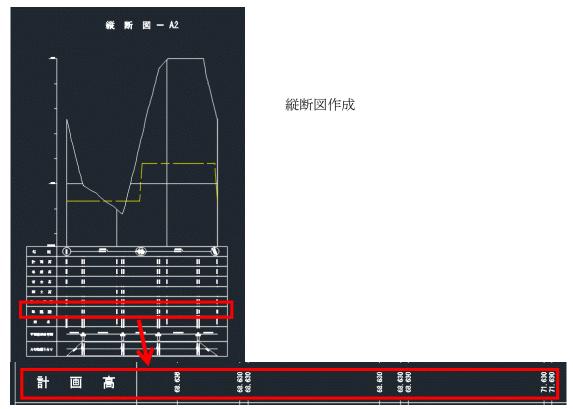
➤ INFRAWORKS360 の BING 地形モデル

1. 地形モデルは INFRAWORKS360 の BING からダウンロードし、REVIT から出来上 がった橋梁構造物モデルを INFRAWORKS360 に取り込み、よりビジュアルな橋梁構 造物を作成する。

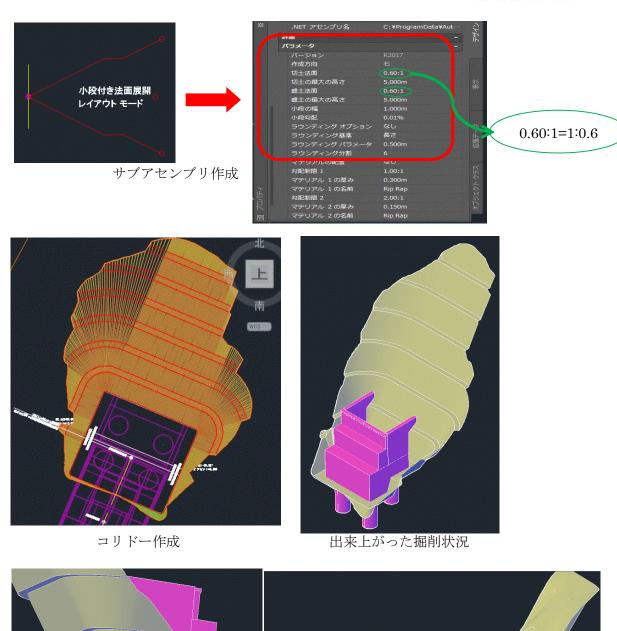

その他(1): 掘削、永久法面の立体図化(土量計算モデル)

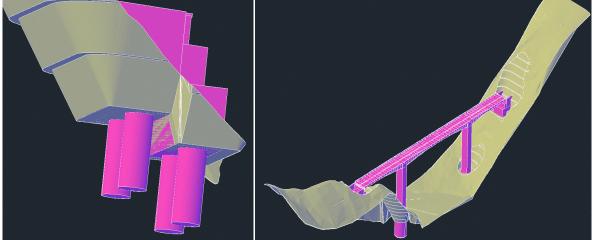
※目的→構造物設計についての掘削形状作成する為。

使用するデータ

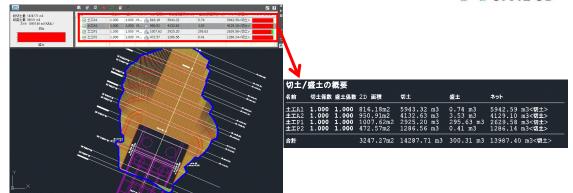

▶ 構造一般図データ

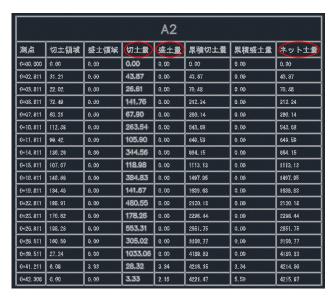
1. 一般図どおり構造物を配置し、平面線形を作成する。


非表示スタイル平面線形作成

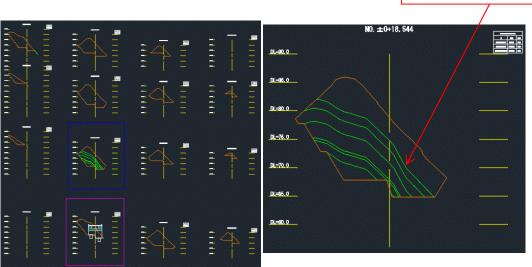

2. 作成した平面線形の縦断図を作成し、基礎どおり標高を入力する。

3. 掘削するために必要なサブアセンブリとコリドーを作成する。



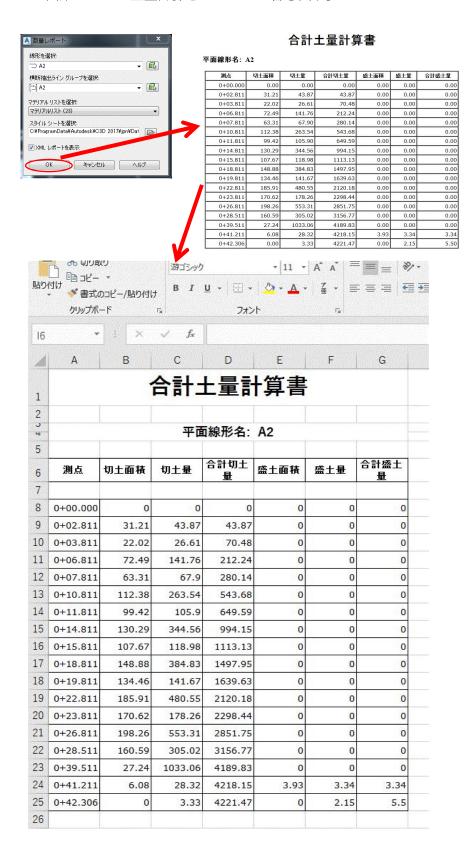

出来上がった掘削状況

4. 土量計算を行う。


総切盛土量作成

平均断面土量計算作成 (側点每土量計算作成)

GEORAMA で作成した


鉛直断面図からの地層線です。

側点毎横断ビュー土量作成

5. 出来上がった土量計算を EXCEL に書き出す。

その他(2): 地質断面図(地層の立体断面図化) GEORAMA

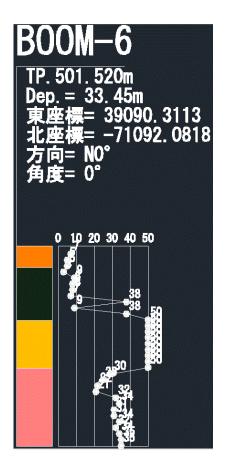
※目的→3 次元地質モデルからは、任意断面で目的の地質断面図を図化、土工計画、設計へ適用する為。

使用するデータ

- ▶ 地質調査データ
- ▶ 地質平面図データ
- ▶ 地質断面図データ
- 1. 地質調査データを入力する。

地質名と地質データ記号を入力

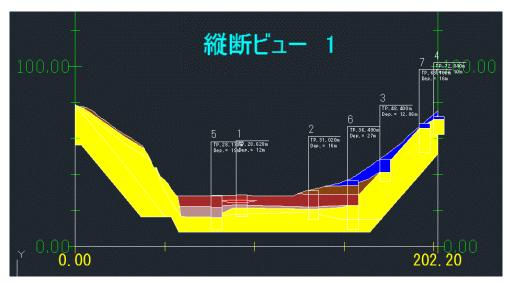
ボーリングデータ入力

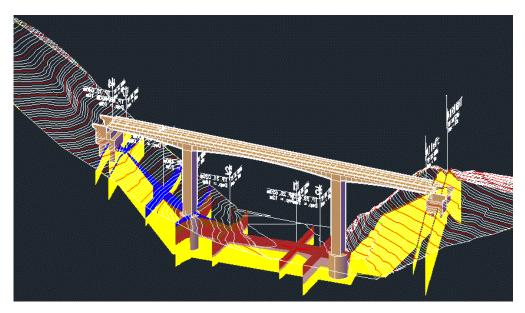

GEORAMA for Civil3D

3 次元土木地質CAD/GISソリューション

土質岩種区分					
4	下端深度	土質岩種区分		記号	分類コード
1	0.12	■Ofd		W	9100
2	2.00	■YFL	·	٧	5000
3	8.90	■OFL4		ScV	8300
4	16.00	■OFL3	¥	Pt	6100
5	26.45	■OFL2		ScV	8300
6			•		

入力したボーリング位置毎 土質+N 値のデータ入力


4	開始深度	入試験 N値	
1	1.30	NIE 4	
2	2.30	8	
3	3.30	8	
4	4.30	7	
5	5.30	8	
6	6.30	8	
7	7.30	12	
8	8.30	22	
9	9.28	50	
10	10.21	50	
11	11.12	50	
12	12.06	50	
13	13.22	50	
14	14.22	50	
15	15.20	5(
16	16.30	23	
17	17.30	23	
18	18.30	22	
19	19.30	23	
20	20.30	27	
21	21.30	3.	
22	22.30	30	
23	23.30	38	
24	24.26	5(
25	25.30	38	
26	26.30	36	


出来上がったボーリングの詳細状況

3次元土木地質CAD/GISソリューション

2. ボーリング毎に 鉛直断面図を作成し、地質を定義し、地質データ+サーフェス+構造物を書き出す。

鉛直断面図

出来上がった3次元地質+サーフェス+構造物の状況

(※今の GEORAMA 作業には、平面図データは無いですから、平面データを抜いて作業しました。)

株式会社エイル http://www.eile.co.jp/

〒169-0051 東京都新宿区西早稲田 2-21-16 高田馬場 EKK ビル 3F